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Summary

Householder QR is not fast enough for tall-skinny matrices
blocked algorithms can be bottlenecked by panel factorizations
applying (aggregated) Householder vectors = matrix multiplication

Tall-Skinny QR (TSQR) [DGHL12] is faster for tall-skinny matrices
applying the implicit orthogonal matrix is more complicated

We can get the best of both worlds at little extra cost
use TSQR but reconstruct the Householder vector representation
good for performance and software engineering
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Key Idea

Compute a QR decomposition
using Householder vectors*:

A = QR = (I − YTY T
1 )R

A Q R I Y T Y R
T

1

Re-arrange the equation and we
have an LU decomposition:

A− R = Y · (−TY T
1 R)

A R Y T Y R
T

1
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Householder QR (HhQR)

Blocked Householder QR works by repeating:
1 panel factorization (tall-skinny QR decomposition)
2 trailing matrix update (application of orthogonal factor)

Householder vectors computed
and applied one at a time

I − τyyT

(two parallel reductions per column)

Householder vectors aggregated
by computing triangular matrix T

I − YTY T

(application = matrix multiplications)
Grey Ballard SIAM PP14 3



Tall-Skinny QR (TSQR)
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Key benefit of TSQR:
one parallel reduction

Orthogonal factor stored implicitly
as tree of Householder vectors



Communication-Avoiding QR (CAQR)

CAQR uses TSQR for panel factorization and applies the update using
implicit tree structure
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Yamamoto’s Idea

Y. Yamamoto gave a talk at SIAM ALA 2012: he wanted to use TSQR
but offload the trailing matrix update to a GPU

To make CAQR’s trailing matrix update more like matrix multiplication,
his idea is to convert implicit tree into compact WY-like representation

W S
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Y. Yamamoto gave a talk at SIAM ALA 2012: he wanted to use TSQR
but offload the trailing matrix update to a GPU

To make CAQR’s trailing matrix update more like matrix multiplication,
his idea is to convert implicit tree into compact WY-like representation

W S

Compact WY representation: I − YTY T

I Y T Y
T

Basis-kernel representation: I −WSW T

I W S W
T
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Yamamoto’s Algorithm

1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Set W = Q − I
4 Set S = (I −Q1)

−1

I −WSW T = I −
[
Q1 − I

Q2

] [
I −Q1

]−1 [
(Q1 − I)T QT

2

]
I W S W

T
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How is Q formed?

Q1 Identity
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Apply Q to the identity,
exploiting sparsity

Computation and communication
identical to TSQR, performed in
reverse order
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Reconstructing Householder Vectors (TSQR-HR)

With a little more effort, we can obtain the compact WY representation:
1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Perform LU decomposition: Q − I = LU
4 Set Y = L
5 Set T = −UY−T

1

I − YTY T = I −
[
Y1
Y2

] [
T
] [

Y T
1 Y T

2

]
I Y T Y

T
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Why form Q?

Cheaper approach based on A− R = Y · (−TY T
1 R):

1 Perform TSQR
2 Perform LU decomposition: A− R = LU
3 Set Y = L
4 Set T = −UR−1Y−T

1 (or compute T from Y )

This approach is similar to computing R using TSQR
and Q using Householder QR

if A is well-conditioned, works fine
if A is low-rank, QR decomposition is not unique
if A is ill-conditioned, R matrix is sensitive to roundoff

Grey Ballard SIAM PP14 11



Why form Q?

Cheaper approach based on A− R = Y · (−TY T
1 R):

1 Perform TSQR
2 Perform LU decomposition: A− R = LU
3 Set Y = L
4 Set T = −UR−1Y−T

1 (or compute T from Y )

This approach is similar to computing R using TSQR
and Q using Householder QR

if A is well-conditioned, works fine
if A is low-rank, QR decomposition is not unique
if A is ill-conditioned, R matrix is sensitive to roundoff

Grey Ballard SIAM PP14 11



What about pivoting in LU?

Third step in reconstructing Householder vectors:
Perform LU decomposition: Q − I = LU

what if Q − I is singular?

Actually, we need to make a sign choice:
Perform LU decomposition: Q − Sgn = LU

Sgn matrix corresponds to sign choice in Householder QR
guarantees Q − Sgn is nonsingular
guarantees maximum element on the diagonal (no pivoting)

No pivoting makes LU of tall-skinny matrix very easy
LU of top block followed by triangular solve for all other rows
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Costs of Householder Reconstruction

Householder Reconstruction
1 Perform TSQR 2nb2 flops, one QR reduction of size b2/2
2 Form Q 2nb2 flops, one QR reduction of size b2/2
3 LU(Q − Sgn) nb2 flops, one broadcast of size b2/2
4 Set Y = L
5 Set T = −U · Sgn · Y−T

1 O(b3) flops

Alternative Algorithms
TSQR 2nb2 flops, one QR reduction of size b2/2
HhQR (and form T ) 3nb2 flops, 2b reductions of size O(b)
Yamamoto’s 4nb2 flops, two QR reductions of size b2/2

For square matrices, flop costs of panel factorization are lower order: O(n2b)
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Performance for Tall-Skinny Matrices
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Performance for Square Matrices
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Binary-Apply CAQR
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Scatter-Apply CAQR

Similar to performing an all-reduce by reduce-scatter followed by all-gather
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Two-Level Aggregation

Block size trades off time spent in panel factorizations with efficiency of
matrix multiplications

Solution:
Use another level of
compact WY blocking

Allow for larger local matrix
multiplications

(Can’t use with CAQR)
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Conclusions

Householder reconstruction provides best of both worlds
latency-avoiding panel factorization
matrix multiplication trailing matrix updates
backwards compatibility for performance portability

Scatter-apply technique improves CAQR trailing matrix update

Two-level aggregation most important optimization on Hopper

We expect Householder reconstruction to become more valuable
as relative latency and synchronization costs increase
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Thanks!

For full details:

Reconstructing Householder Vectors from TSQR

Grey Ballard, James Demmel, Laura Grigori,
Mathias Jacquelin, Hong Diep Nguyen and Edgar Solomonik

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/
EECS-2013-175.html

gmballa@sandia.gov
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Numerical Stability

Theorem
Let R̂ be the computed upper triangular factor of m × b matrix A
obtained via the TSQR algorithm with p processors using a binary tree
(assuming m/p ≥ b), and let Q̃ = I − Ỹ T̃ Ỹ T

1 and R̃ = SR̂ where Ỹ , T̃ ,
and S are the computed factors obtained from Householder
reconstruction. Then

‖A− Q̃R̃‖F ≤ F1(m,b,p, ε)‖A‖F

and
‖I − Q̃T Q̃‖F ≤ F2(m,b,p, ε)

where F1,F2 = O
((

b3/2(m/p) + b5/2 log p + b3) ε) for b(m/p)ε� 1.
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Numerical Experiments for Tall-Skinny Matrices

ρ κ ‖A−QR‖2 ‖I −QT Q‖2
1e-01 5.1e+02 2.2e-15 9.3e-15
1e-03 5.0e+04 2.2e-15 8.4e-15
1e-05 5.1e+06 2.3e-15 8.7e-15
1e-07 5.0e+08 2.4e-15 1.1e-14
1e-09 5.0e+10 2.3e-15 9.9e-15
1e-11 4.9e+12 2.5e-15 1.0e-14
1e-13 5.0e+14 2.2e-15 8.8e-15
1e-15 5.0e+15 2.4e-15 9.7e-15

Error of TSQR-HR on tall and skinny matrices (m = 1000,b = 200)
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Numerical Experiments for Square Matrices

Matrix type κ ‖A−QR‖2 ‖I −QT Q‖2

A = 2 ∗ rand(m)− 1 2.1e+03 4.3e-15 (256) 2.8e-14 (2)
Golub-Klema-Stewart 2.2e+20 0.0e+00 (2) 0.0e+00 (2)
Break 1 distribution 1.0e+09 1.0e-14 (256) 2.8e-14 (2)
Break 9 distribution 1.0e+09 9.9e-15 (256) 2.9e-14 (2)
UΣV T with exponential distribution 4.2e+19 2.0e-15 (256) 2.8e-14 (2)
The devil’s stairs matrix 2.3e+19 2.4e-15 (256) 2.8e-14 (2)
KAHAN matrix, a trapezoidal matrix 5.6e+56 0.0e+00 (2) 0.0e+00 (2)
Matrix ARC130 from Matrix Market 6.0e+10 8.8e-19 (16) 2.1e-15 (2)
Matrix FS_541_1 from Matrix Market 4.5e+03 5.8e-16 (64) 1.8e-15 (256)
DERIV2: second derivative 1.2e+06 2.8e-15 (256) 4.6e-14 (2)
FOXGOOD: severely ill-posed problem 5.7e+20 2.4e-15 (256) 2.8e-14 (2)

Errors of CAQR-HR on square matrices (m = 1000). The numbers in
parentheses give the panel width yielding largest error.
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